Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chord Embeddings: Analyzing What They Capture and Their Role for Next Chord Prediction and Artist Attribute Prediction (2102.02917v1)

Published 4 Feb 2021 in cs.SD, cs.AI, and cs.CL

Abstract: Natural language processing methods have been applied in a variety of music studies, drawing the connection between music and language. In this paper, we expand those approaches by investigating \textit{chord embeddings}, which we apply in two case studies to address two key questions: (1) what musical information do chord embeddings capture?; and (2) how might musical applications benefit from them? In our analysis, we show that they capture similarities between chords that adhere to important relationships described in music theory. In the first case study, we demonstrate that using chord embeddings in a next chord prediction task yields predictions that more closely match those by experienced musicians. In the second case study, we show the potential benefits of using the representations in tasks related to musical stylometrics.

Citations (2)

Summary

We haven't generated a summary for this paper yet.