2000 character limit reached
Bounds on the Geometric Complexity of Optimal Centroidal Voronoi Tesselations in 3D (1806.07591v2)
Published 20 Jun 2018 in math.OC and math.MG
Abstract: Gersho's conjecture in 3D asserts the asymptotic periodicity and structure of the optimal centroidal Voronoi tessellation. This relatively simple crystallization problem remains to date open. We prove bounds on the geometric complexity of optimal centroidal Voronoi tessellations which, combined with an approach introduced by Gruber in 2D, reduce the resolution of the 3D Gersho's conjecture to a finite (albeit large) computation of an explicit convex problem in finitely many variables.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.