Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fast Kernelized Correlation Filters without Boundary Effect (1806.06406v5)

Published 17 Jun 2018 in cs.CV

Abstract: In recent years, correlation filter based trackers (CF trackers) have attracted much attention from the vision community because of their top performance in both localization accuracy and efficiency. The society of visual tracking, however, still needs to deal with the following difficulty on CF trackers: avoiding or eliminating the boundary effect completely, in the meantime, exploiting non-linear kernels and running efficiently. In this paper, we propose a fast kernelized correlation filter without boundary effect (nBEKCF) to solve this problem. To avoid the boundary effect thoroughly, a set of \emph{real} and \emph{dense} patches is sampled through the traditional sliding window and used as the training samples to train nBEKCF to fit a Gaussian response map. Non-linear kernels can be applied naturally in nBEKCF due to its different theoretical foundation from the existing CF trackers'. To achieve the fast training and detection, a set of cyclic bases is introduced to construct the filter. Two algorithms, ACSII and CCIM, are developed to significantly accelerate the calculation of kernel correlation matrices. ACSII and CCIM fully exploit the density of training samples and cyclic structure of bases, and totally run in space domain. The efficiency of CCIM exceeds that of the FFT counterpart remarkably in our task. Extensive experiments on six public datasets, OTB-2013, OTB-2015, NfS, VOT2018, GOT10k, and TrackingNet, show that compared to the CF trackers designed to relax the boundary effect, BACF and SRDCF, our nBEKCF achieves higher localization accuracy without tricks, in the meanwhile, runs at higher FPS.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.