Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Region-filtering Correlation Tracking (1803.08687v1)

Published 23 Mar 2018 in cs.CV

Abstract: Recently, correlation filters have demonstrated the excellent performance in visual tracking. However, the base training sample region is larger than the object region,including the Interference Region(IR). The IRs in training samples from cyclic shifts of the base training sample severely degrade the quality of a tracking model. In this paper, we propose the novel Region-filtering Correlation Tracking (RFCT) to address this problem. We immediately filter training samples by introducing a spatial map into the standard CF formulation. Compared with existing correlation filter trackers, our proposed tracker has the following advantages: (1) The correlation filter can be learned on a larger search region without the interference of the IR by a spatial map. (2) Due to processing training samples by a spatial map, it is more general way to control background information and target information in training samples. The values of the spatial map are not restricted, then a better spatial map can be explored. (3) The weight proportions of accurate filters are increased to alleviate model corruption. Experiments are performed on two benchmark datasets: OTB-2013 and OTB-2015. Quantitative evaluations on these benchmarks demonstrate that the proposed RFCT algorithm performs favorably against several state-of-the-art methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.