Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-learning: searching in the model space (1806.06207v1)

Published 16 Jun 2018 in cs.LG, cs.AI, and stat.ML

Abstract: There is no free lunch, no single learning algorithm that will outperform other algorithms on all data. In practice different approaches are tried and the best algorithm selected. An alternative solution is to build new algorithms on demand by creating a framework that accommodates many algorithms. The best combination of parameters and procedures is searched here in the space of all possible models belonging to the framework of Similarity-Based Methods (SBMs). Such meta-learning approach gives a chance to find the best method in all cases. Issues related to the meta-learning and first tests of this approach are presented.

Citations (3)

Summary

We haven't generated a summary for this paper yet.