Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Multi-Agent Deep Reinforcement Learning with Human Strategies (1806.04562v2)

Published 12 Jun 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Deep learning has enabled traditional reinforcement learning methods to deal with high-dimensional problems. However, one of the disadvantages of deep reinforcement learning methods is the limited exploration capacity of learning agents. In this paper, we introduce an approach that integrates human strategies to increase the exploration capacity of multiple deep reinforcement learning agents. We also report the development of our own multi-agent environment called Multiple Tank Defence to simulate the proposed approach. The results show the significant performance improvement of multiple agents that have learned cooperatively with human strategies. This implies that there is a critical need for human intellect teamed with machines to solve complex problems. In addition, the success of this simulation indicates that our multi-agent environment can be used as a testbed platform to develop and validate other multi-agent control algorithms.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.