Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Contextual Centrality: Going Beyond Network Structures (1805.12204v2)

Published 30 May 2018 in cs.SI and physics.soc-ph

Abstract: Centrality is a fundamental network property which ranks nodes by their structural importance. However, structural importance may not suffice to predict successful diffusions in a wide range of applications, such as word-of-mouth marketing and political campaigns. In particular, nodes with high structural importance may contribute negatively to the objective of the diffusion. To address this problem, we propose contextual centrality, which integrates structural positions, the diffusion process, and, most importantly, nodal contributions to the objective of the diffusion. We perform an empirical analysis of the adoption of microfinance in Indian villages and weather insurance in Chinese villages. Results show that contextual centrality of the first-informed individuals has higher predictive power towards the eventual adoption outcomes than other standard centrality measures. Interestingly, when the product of diffusion rate $p$ and the largest eigenvalue $\lambda_1$ is larger than one and diffusion period is long, contextual centrality linearly scales with eigenvector centrality. This approximation reveals that contextual centrality identifies scenarios where a higher diffusion rate of individuals may negatively influence the cascade payoff. Further simulations on the synthetic and real-world networks show that contextual centrality has the advantage of selecting an individual whose local neighborhood generates a high cascade payoff when $p \lambda_1 < 1$. Under this condition, stronger homophily leads to higher cascade payoff. Our results suggest that contextual centrality captures more complicated dynamics on networks and has significant implications for applications, such as information diffusion, viral marketing, and political campaigns.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.