Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparative evaluation of community-aware centrality measures (2205.06995v1)

Published 14 May 2022 in cs.SI and cs.CY

Abstract: Influential nodes play a critical role in boosting or curbing spreading phenomena in complex networks. Numerous centrality measures have been proposed for identifying and ranking the nodes according to their importance. Classical centrality measures rely on various local or global properties of the nodes. They do not take into account the network community structure. Recently, a growing number of researches have shifted to community-aware centrality measures. Indeed, it is a ubiquitous feature in a vast majority of real-world networks. In the literature, the focus is on designing community-aware centrality measures. However, up to now, there is no systematic evaluation of their effectiveness. This study fills this gap. It allows answering which community-aware centrality measure should be used in practical situations. We investigate seven influential community-aware centrality measures in an epidemic spreading process scenario using the Susceptible-Infected-Recovered (SIR) model on a set of fifteen real-world networks. Results show that generally, the correlation between community-aware centrality measures is low. Furthermore, in a multiple-spreader problem, when resources are available, targeting distant hubs using Modularity Vitality is more effective. However, with limited resources, diffusion expands better through bridges, especially in networks with a medium or strong community structure.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Stephany Rajeh (9 papers)
  2. Marinette Savonnet (10 papers)
  3. Eric Leclercq (10 papers)
  4. Hocine Cherifi (44 papers)
Citations (29)

Summary

We haven't generated a summary for this paper yet.