Papers
Topics
Authors
Recent
2000 character limit reached

Mining and Forecasting Career Trajectories of Music Artists (1805.03324v1)

Published 9 May 2018 in cs.SI

Abstract: Many musicians, from up-and-comers to established artists, rely heavily on performing live to promote and disseminate their music. To advertise live shows, artists often use concert discovery platforms that make it easier for their fans to track tour dates. In this paper, we ask whether digital traces of live performances generated on those platforms can be used to understand career trajectories of artists. First, we present a new dataset we constructed by cross-referencing data from such platforms. We then demonstrate how this dataset can be used to mine and predict important career milestones for the musicians, such as signing by a major music label, or performing at a certain venue. Finally, we perform a temporal analysis of the bipartite artist-venue graph, and demonstrate that high centrality on this graph is correlated with success.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.