Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Stability of Infinite Systems of Coupled Oscillators Via Random Walks on Weighted Graphs (1805.02212v1)

Published 6 May 2018 in math.DS

Abstract: Weakly coupled oscillators are used throughout the physical sciences, particularly in mathematical neuroscience to describe the interaction of neurons in the brain. Systems of weakly coupled oscillators have a well-known decomposition to a canonical phase model which forms the basis of our investigation in this work. Particularly, our interest lies in examining the stability of synchronous (phase-locked) solutions to this phase system: solutions with phases having the same temporal frequency but differ through time-independent phase-lags. The main stability result of this work comes from adapting a series of investigations into random walks on infinite weighted graphs. We provide an interesting link between the seemingly unrelated areas of coupled oscillators and random walks to obtain algebraic decay rates of small perturbations off the phase-locked solutions under some minor technical assumptions. We also provide some interesting and motivating examples that demonstrate the stability of phase-locked solutions, particularly that of a rotating wave solution arising in a well studied paradigm in the theory of coupled oscillators.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.