Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability of clusters in the second-order Kuramoto model on random graphs (2005.05367v1)

Published 11 May 2020 in nlin.AO and math.DS

Abstract: The Kuramoto model of coupled phase oscillators with inertia on Erdos-Renyi graphs is analyzed in this work. For a system with intrinsic frequencies sampled from a bimodal distribution we identify a variety of two cluster patterns and study their stability. To this end, we decompose the description of the cluster dynamics into two systems: one governing the (macro) dynamics of the centers of mass of the two clusters and the second governing the (micro) dynamics of individual oscillators inside each cluster. The former is a low-dimensional ODE whereas the latter is a system of two coupled Vlasov PDEs. Stability of the cluster dynamics depends on the stability of the low-dimensional group motion and on coherence of the oscillators in each group. We show that the loss of coherence in one of the clusters leads to the loss of stability of a two-cluster state and to formation of chimera states. The analysis of this paper can be generalized to cover states with more than two clusters and to coupled systems on W-random graphs. Our results apply to a model of a power grid with fluctuating sources.

Summary

We haven't generated a summary for this paper yet.