Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Determination Scheme for Quasi-Identifiers Using Uniqueness and Influence for De-Identification of Clinical Data (1804.04762v1)

Published 13 Apr 2018 in cs.CR

Abstract: Objectives; The accumulation and usefulness of clinical data have increased with IT development. While using clinical data that needs to be identifiable to obtain meaningful information, it is essential to ensure that data is de-identified and unnecessary clinical information is minimized to protect personal information. This process requires criteria and an appropriate method as there are clear identifiers as well as quasi-identifiers that are not readily identifiable. Methods; To formulate such a method, first, primary quasi-identifiers were selected by classifying information in 20 clinical personal information database tables into Direct-Identifier (DID), Quasi-Identifier (QI), Sensitive Attribute (SA), and Non-Sensitive Attribute (NSA) according to its type. Secondary QIs were then selected by assessing the risk for outliers by measuring uniqueness values of the selected data and scoring re-identification by calculating equivalence class of the influence on other data on QI removal. Third, the risk of re-identification of data users was numeralized and classified. Lastly, the final QI according to user class was determined by comparing the calculated re-identification scores to the threshold values of user classes. Results; Eventually, final QIs ranging from a minimum of 18 to a maximum of 28 were selected by making an assumption about user classes and using it as criteria. Conclusions; The QI selection method presented by the current investigators can be used by researchers at the final checkup stage before they de-identify the selected QIs. Therefore, clinical data users can securely and efficiently use clinical data containing personal information by objectively selecting QIs using the method proposed in the present study.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.