Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using routinely collected patient data to support clinical trials research in accountable care organizations (1807.00668v1)

Published 25 Jun 2018 in q-bio.QM, cs.CY, and cs.IR

Abstract: Background: More than half (57%) of pharma clinical research spend is in support of clinical trials. One reason is that Electronic Health Record (EHR) systems and HIPAA privacy rules often limit how broadly patient information can be shared, resulting in laborious human efforts to manually collect, de-identify, and summarize patient information for use in clinical studies. Purpose: Conduct feasibility study for a Rheumatoid Arthritis (RA) clinical trial in an Accountable Care Organization. Measure prevalence of RA and related conditions matching study criteria. Evaluate automation of patient de-identification and summarization to support patient cohort development for clinical studies. Methods: Collect original clinical documentation directly from the provider EHR system and extract clinical concepts necessary for matching study criteria. Automatically de-identify Protected Health Information (PHI) protect patient privacy and promote sharing. Leverage existing physician expert knowledge sources to enable analysis of patient populations. Results: Prevalence of RA was four percent (4%) in the study population (mean age 53 years, 52% female, 48% male). Clinical documentation for 3500 patient were extracted from three (3) EHR systems. Grouped diagnosis codes revealed high prevalence of diabetes and diseases of the circulatory system, as expected. De-identification accurately removed 99% of PHI identifiers with 99% sensitivity and 99% specificity. Conclusions: Results suggest the approach can improve automation and accelerate planning and construction of new clinical studies in the ACO setting. De-identification accuracy was better than previously approved requirements defined by four (4) hospital Institutional Review Boards.

Summary

We haven't generated a summary for this paper yet.