Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal investment-consumption problem: post-retirement with minimum guarantee

Published 22 Feb 2018 in q-fin.PM, math.OC, and math.PR | (1803.00611v2)

Abstract: We study the optimal investment-consumption problem for a member of defined contribution plan during the decumulation phase. For a fixed annuitization time, to achieve higher final annuity, we consider a variable consumption rate. Moreover, to have a minimum guarantee for the final annuity, a safety level for the wealth process is considered. To solve the stochastic optimal control problem via dynamic programming, we obtain a Hamilton-Jacobi-Bellman (HJB) equation on a bounded domain. The existence and uniqueness of classical solutions are proved through the dual transformation. We apply the finite difference method to find numerical approximations of the solution of the HJB equation. Finally, the simulation results for the optimal investment-consumption strategies, optimal wealth process and the final annuity for different admissible ranges of consumption are given. Furthermore, by taking into account the market present value of the cash flows before and after the annuitization, we compare the outcomes of different scenarios.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.