Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Single Image Super-Resolution via Cascaded Multi-Scale Cross Network (1802.08808v1)

Published 24 Feb 2018 in cs.CV

Abstract: The deep convolutional neural networks have achieved significant improvements in accuracy and speed for single image super-resolution. However, as the depth of network grows, the information flow is weakened and the training becomes harder and harder. On the other hand, most of the models adopt a single-stream structure with which integrating complementary contextual information under different receptive fields is difficult. To improve information flow and to capture sufficient knowledge for reconstructing the high-frequency details, we propose a cascaded multi-scale cross network (CMSC) in which a sequence of subnetworks is cascaded to infer high resolution features in a coarse-to-fine manner. In each cascaded subnetwork, we stack multiple multi-scale cross (MSC) modules to fuse complementary multi-scale information in an efficient way as well as to improve information flow across the layers. Meanwhile, by introducing residual-features learning in each stage, the relative information between high-resolution and low-resolution features is fully utilized to further boost reconstruction performance. We train the proposed network with cascaded-supervision and then assemble the intermediate predictions of the cascade to achieve high quality image reconstruction. Extensive quantitative and qualitative evaluations on benchmark datasets illustrate the superiority of our proposed method over state-of-the-art super-resolution methods.

Citations (52)

Summary

We haven't generated a summary for this paper yet.