Papers
Topics
Authors
Recent
2000 character limit reached

Floating structures in shallow water: local well-posedness in the axisymmetric case (1802.07643v3)

Published 21 Feb 2018 in math.AP, physics.ao-ph, and physics.flu-dyn

Abstract: The floating structure problem describes the interaction between surface water waves and a floating body, generally a boat or a wave energy converter. As shown by Lannes in [18] the equations for the fluid motion can be reduced to a set of two evolution equations on the surface elevation and the horizontal discharge. The presence of the object is accounted for by a constraint on the discharge under the object; the pressure exerted by the fluid on this object is then the Lagrange multiplier associated to this constraint. Our goal in this paper is to prove the well-posedness of this fluid-structure interaction problem in the shallow water approximation under the assumption that the flow is axisymmetric without swirl. We write the fluid equations as a quasilinear hyperbolic mixed initial boundary value problem and the solid equation as a second order ODE coupled to the fluid equations. Finally we prove the local in time well-posedness for this coupled problem, provided some compatibility conditions on the initial data are satisfied.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.