Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Admissible Time Series Motif Discovery with Missing Data (1802.05472v1)

Published 15 Feb 2018 in cs.LG, cs.AI, and stat.ML

Abstract: The discovery of time series motifs has emerged as one of the most useful primitives in time series data mining. Researchers have shown its utility for exploratory data mining, summarization, visualization, segmentation, classification, clustering, and rule discovery. Although there has been more than a decade of extensive research, there is still no technique to allow the discovery of time series motifs in the presence of missing data, despite the well-documented ubiquity of missing data in scientific, industrial, and medical datasets. In this work, we introduce a technique for motif discovery in the presence of missing data. We formally prove that our method is admissible, producing no false negatives. We also show that our method can piggy-back off the fastest known motif discovery method with a small constant factor time/space overhead. We will demonstrate our approach on diverse datasets with varying amounts of missing data

Summary

We haven't generated a summary for this paper yet.