Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep Learning Models Delineates Multiple Nuclear Phenotypes in H&E Stained Histology Sections

Published 13 Feb 2018 in cs.CV and q-bio.QM | (1802.04427v2)

Abstract: Nuclear segmentation is an important step for profiling aberrant regions of histology sections. However, segmentation is a complex problem as a result of variations in nuclear geometry (e.g., size, shape), nuclear type (e.g., epithelial, fibroblast), and nuclear phenotypes (e.g., vesicular, aneuploidy). The problem is further complicated as a result of variations in sample preparation. It is shown and validated that fusion of very deep convolutional networks overcomes (i) complexities associated with multiple nuclear phenotypes, and (ii) separation of overlapping nuclei. The fusion relies on integrating of networks that learn region- and boundary-based representations. The system has been validated on a diverse set of nuclear phenotypes that correspond to the breast and brain histology sections.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.