Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring bot and human behavioral dynamics (1802.04286v2)

Published 12 Feb 2018 in cs.HC and cs.SI

Abstract: Bots, social media accounts controlled by software rather than by humans, have recently been under the spotlight for their association with various forms of online manipulation. To date, much work has focused on social bot detection, but little attention has been devoted to the characterization and measurement of the behavior and activity of bots, as opposed to humans'. Over the course of the years, bots have become more sophisticated, and capable to reflect some short-term behavior, emulating that of human users. The goal of this paper is to study the behavioral dynamics that bots exhibit over the course of one activity session, and highlight if and how these differ from human activity signatures. By using a large Twitter dataset associated with recent political events, we first separate bots and humans, then isolate their activity sessions. We compile a list of quantities to be measured, like the propensity of users to engage in social interactions or to produce content. Our analysis highlights the presence of short-term behavioral trends in humans, which can be associated with a cognitive origin, that are absent in bots, intuitively due to their automated activity. These findings are finally codified to create and evaluate a machine learning algorithm to detect activity sessions produced by bots and humans, to allow for more nuanced bot detection strategies.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Iacopo Pozzana (5 papers)
  2. Emilio Ferrara (197 papers)
Citations (46)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com