Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Selective Deep Convolutional Features to Compact Binary Representations for Image Retrieval (1802.02899v3)

Published 7 Feb 2018 in cs.CV

Abstract: In the large-scale image retrieval task, the two most important requirements are the discriminability of image representations and the efficiency in computation and storage of representations. Regarding the former requirement, Convolutional Neural Network (CNN) is proven to be a very powerful tool to extract highly discriminative local descriptors for effective image search. Additionally, in order to further improve the discriminative power of the descriptors, recent works adopt fine-tuned strategies. In this paper, taking a different approach, we propose a novel, computationally efficient, and competitive framework. Specifically, we firstly propose various strategies to compute masks, namely SIFT-mask, SUM-mask, and MAX-mask, to select a representative subset of local convolutional features and eliminate redundant features. Our in-depth analyses demonstrate that proposed masking schemes are effective to address the burstiness drawback and improve retrieval accuracy. Secondly, we propose to employ recent embedding and aggregating methods which can significantly boost the feature discriminability. Regarding the computation and storage efficiency, we include a hashing module to produce very compact binary image representations. Extensive experiments on six image retrieval benchmarks demonstrate that our proposed framework achieves the state-of-the-art retrieval performances.

Citations (30)

Summary

We haven't generated a summary for this paper yet.