Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Preserved Structure Across Vector Space Representations (1802.00840v2)

Published 2 Feb 2018 in q-bio.NC and cs.CL

Abstract: Certain concepts, words, and images are intuitively more similar than others (dog vs. cat, dog vs. spoon), though quantifying such similarity is notoriously difficult. Indeed, this kind of computation is likely a critical part of learning the category boundaries for words within a given language. Here, we use a set of 27 items (e.g. 'dog') that are highly common in infants' input, and use both image- and word-based algorithms to independently compute similarity among them. We find three key results. First, the pairwise item similarities derived within image-space and word-space are correlated, suggesting preserved structure among these extremely different representational formats. Second, the closest 'neighbors' for each item, within each space, showed significant overlap (e.g. both found 'egg' as a neighbor of 'apple'). Third, items with the most overlapping neighbors are later-learned by infants and toddlers. We conclude that this approach, which does not rely on human ratings of similarity, may nevertheless reflect stable within-class structure across these two spaces. We speculate that such invariance might aid lexical acquisition, by serving as an informative marker of category boundaries.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com