Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Proof of Symmetry of the Power Sum Polynomials using a Novel Bernoulli Numbers Identity

Published 20 Dec 2017 in math.HO | (1801.07293v1)

Abstract: The problem of finding formulas for sums of powers of natural numbers has been of interest to mathematicians for many centuries. Among these is Faulhaber's well-known formula expressing the power sums as polynomials whose coefficients involve Bernoulli numbers. In this paper we give an elementary proof that the sum of $p$-th powers of the first $n$ natural numbers can be expressed as a polynomial in $n$ of degree $p+1$. We also prove a novel identity involving Bernoulli numbers and use it to show symmetry of this polynomial.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.