Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

BinaryRelax: A Relaxation Approach For Training Deep Neural Networks With Quantized Weights (1801.06313v3)

Published 19 Jan 2018 in cs.CV and math.OC

Abstract: We propose BinaryRelax, a simple two-phase algorithm, for training deep neural networks with quantized weights. The set constraint that characterizes the quantization of weights is not imposed until the late stage of training, and a sequence of \emph{pseudo} quantized weights is maintained. Specifically, we relax the hard constraint into a continuous regularizer via Moreau envelope, which turns out to be the squared Euclidean distance to the set of quantized weights. The pseudo quantized weights are obtained by linearly interpolating between the float weights and their quantizations. A continuation strategy is adopted to push the weights towards the quantized state by gradually increasing the regularization parameter. In the second phase, exact quantization scheme with a small learning rate is invoked to guarantee fully quantized weights. We test BinaryRelax on the benchmark CIFAR and ImageNet color image datasets to demonstrate the superiority of the relaxed quantization approach and the improved accuracy over the state-of-the-art training methods. Finally, we prove the convergence of BinaryRelax under an approximate orthogonality condition.

Citations (74)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.