Papers
Topics
Authors
Recent
Search
2000 character limit reached

Evaluation of Machine Learning Fameworks on Finis Terrae II

Published 14 Jan 2018 in cs.DC and cs.LG | (1801.04546v1)

Abstract: Machine Learning (ML) and Deep Learning (DL) are two technologies used to extract representations of the data for a specific purpose. ML algorithms take a set of data as input to generate one or several predictions. To define the final version of one model, usually there is an initial step devoted to train the algorithm (get the right final values of the parameters of the model). There are several techniques, from supervised learning to reinforcement learning, which have different requirements. On the market, there are some frameworks or APIs that reduce the effort for designing a new ML model. In this report, using the benchmark DLBENCH, we will analyse the performance and the execution modes of some well-known ML frameworks on the Finis Terrae II supercomputer when supervised learning is used. The report will show that placement of data and allocated hardware can have a large influence on the final timeto-solution.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.