Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Enhancing Translation Language Models with Word Embedding for Information Retrieval (1801.03844v1)

Published 11 Jan 2018 in cs.IR

Abstract: In this paper, we explore the usage of Word Embedding semantic resources for Information Retrieval (IR) task. This embedding, produced by a shallow neural network, have been shown to catch semantic similarities between words (Mikolov et al., 2013). Hence, our goal is to enhance IR LLMs by addressing the term mismatch problem. To do so, we applied the model presented in the paper Integrating and Evaluating Neural Word Embedding in Information Retrieval by Zuccon et al. (2015) that proposes to estimate the translation probability of a Translation LLM using the cosine similarity between Word Embedding. The results we obtained so far did not show a statistically significant improvement compared to classical LLM.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.