Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Answer Selection with Pre-Trained Word Embeddings (1708.04326v1)

Published 14 Aug 2017 in cs.IR

Abstract: This paper evaluates existing and newly proposed answer selection methods based on pre-trained word embeddings. Word embeddings are highly effective in various natural language processing tasks and their integration into traditional information retrieval (IR) systems allows for the capture of semantic relatedness between questions and answers. Empirical results on three publicly available data sets show significant gains over traditional term frequency based approaches in both supervised and unsupervised settings. We show that combining these word embedding features with traditional learning-to-rank techniques can achieve similar performance to state-of-the-art neural networks trained for the answer selection task.

Citations (3)

Summary

We haven't generated a summary for this paper yet.