Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Despeckling (1801.03318v1)

Published 10 Jan 2018 in cs.CV

Abstract: Contrast and quality of ultrasound images are adversely affected by the excessive presence of speckle. However, being an inherent imaging property, speckle helps in tissue characterization and tracking. Thus, despeckling of the ultrasound images requires the reduction of speckle extent without any oversmoothing. In this letter, we aim to address the despeckling problem using an unsupervised deep adversarial approach. A despeckling residual neural network (DRNN) is trained with an adversarial loss imposed by a discriminator. The discriminator tries to differentiate between the despeckled images generated by the DRNN and the set of high-quality images. Further to prevent the developed DRNN from oversmoothing, a structural loss term is used along with the adversarial loss. Experimental evaluations show that the proposed DRNN is able to outperform the state-of-the-art despeckling approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.