Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Quenched phantom distribution functions for Markov chains (1801.02587v1)

Published 8 Jan 2018 in math.PR

Abstract: It is known that random walk Metropolis algorithms with heavy-tailed target densities can model atypical (slow) growth of maxima, which in general is exhibited by processes with the extremal index zero. The asymptotics of maxima of such sequences can be analyzed in terms of continuous phantom distribution functions. We show that in a large class of positive Harris recurrent Markov chains (containing the above Metropolis chains) a phantom distribution function can be recovered by starting "at the point" rather than from the stationary distribution.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.