Papers
Topics
Authors
Recent
2000 character limit reached

Construction of $J^{\text{th}}$-stage Nonuniform Wavelets on Local Fields (1801.00417v1)

Published 1 Jan 2018 in math.FA

Abstract: Shah and Abdullah [Complex Analysis Operator Theory, 9 (2015), 1589-1608] have introduced a generalized notion of nonuniform multiresolution analysis (NUMRA) on local field $K$ of positive characteristic in which the translation set $\Lambda$ acting on the scaling function to generate the core space $V_{0}$ is no longer a group, but is the union of ${\mathcal Z}$ and a translate of ${\mathcal Z}$, given by $\Lambda=\left{0,u(r)/N \right}+{\mathcal Z}$, where $N \ge 1$ is an integer and $r$ is an odd integer such that $r$ and $N$ are relatively prime, and ${\mathcal Z}={u(n): n\in\mathbb N_{0}}$ is a complete list of distinct cosets of the unit disc $\mathfrak D$ in $K+.$ In this paper, we focus on the extension of nonuniform continuous wavelets to the construction of $J{\text{th}}$-stage nonuniform discrete wavelets on local fields. We establish some general characterizations for the $J{\text{th}}$-stage nonuniform discrete wavelet systems to be orthornormal bases in $L2(\Lambda)$. Moreover, we establish a relation between the continuous wavelets of $L2(K)$ and their discrete counterparts of $l2(\Lambda)$.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.