Papers
Topics
Authors
Recent
2000 character limit reached

Biorthogonal Wavelets on the Spectrum (1712.02058v1)

Published 6 Dec 2017 in math.FA

Abstract: A generalization of Mallat's classic theory of multiresolution analysis based on the theory of spectral pairs was considered by Gabardo and Nashed (J. Funct. Anal. 158, 209-241, 1998). In this article, we introduce the notion of biorthgonoal nonuniform multiresolution analysis on the spectrum $\Lambda=\left{0, r/N\right}+2\mathbb Z$, where $N\ge 1$ is an integer and $r$ is an odd integer with $1\le r\le 2N-1$ such that $r$ and $N$ are relatively prime. We first establish the necessary and sufficient conditions for the translates of a single function to form the Riesz bases for their closed linear span. We provide the complete characterization for the biorthogonality of the translates of scaling functions of two nonuniform multiresolution analysis and the associated biorthogonal wavelet families. Furthermore, under the mild assumptions on the scaling functions and the corresponding wavelets associated with nonuniform multiresolution analysis, we show that the wavelets can generate Reisz bases.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.