Papers
Topics
Authors
Recent
2000 character limit reached

Lightweight Neural Networks (1712.05695v1)

Published 15 Dec 2017 in cs.LG, cs.AI, cs.CV, and cs.NE

Abstract: Most of the weights in a Lightweight Neural Network have a value of zero, while the remaining ones are either +1 or -1. These universal approximators require approximately 1.1 bits/weight of storage, posses a quick forward pass and achieve classification accuracies similar to conventional continuous-weight networks. Their training regimen focuses on error reduction initially, but later emphasizes discretization of weights. They ignore insignificant inputs, remove unnecessary weights, and drop unneeded hidden neurons. We have successfully tested them on the MNIST, credit card fraud, and credit card defaults data sets using networks having 2 to 16 hidden layers and up to 4.4 million weights.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.