Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning simulates Agent-Based Model (1712.04429v2)

Published 12 Dec 2017 in cs.MA

Abstract: Running agent-based models (ABMs) is a burdensome computational task, specially so when considering the flexibility ABMs intrinsically provide. This paper uses a bundle of model configuration parameters along with obtained results from a validated ABM to train some Machine Learning methods for socioeconomic optimal cases. A larger space of possible parameters and combinations of parameters are then used as input to predict optimal cases and confirm parameters calibration. Analysis of the parameters of the optimal cases are then compared to the baseline model. This exploratory initial exercise confirms the adequacy of most of the parameters and rules and suggests changing of directions to two parameters. Additionally, it helps highlight metropolitan regions of higher quality of life. Better understanding of ABM mechanisms and parameters' influence may nudge policy-making slightly closer to optimal level.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (1)