Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Progressive Bit-Flipping Decoding of Polar Codes Over Layered Critical Sets (1712.03332v1)

Published 9 Dec 2017 in cs.IT and math.IT

Abstract: In successive cancellation (SC) polar decoding, an incorrect estimate of any prior unfrozen bit may bring about severe error propagation in the following decoding, thus it is desirable to find out and correct an error as early as possible. In this paper, we first construct a critical set $S$ of unfrozen bits, which with high probability (typically $>99\%$) includes the bit where the first error happens. Then we develop a progressive multi-level bit-flipping decoding algorithm to correct multiple errors over the multiple-layer critical sets each of which is constructed using the remaining undecoded subtree associated with the previous layer. The \emph{level} in fact indicates the number of \emph{independent} errors that could be corrected. We show that as the level increases, the block error rate (BLER) performance of the proposed progressive bit flipping decoder competes with the corresponding cyclic redundancy check (CRC) aided successive cancellation list (CA-SCL) decoder, e.g., a level 4 progressive bit-flipping decoder is comparable to the CA-SCL decoder with a list size of $L=32$. Furthermore, the average complexity of the proposed algorithm is much lower than that of a SCL decoder (and is similar to that of SC decoding) at medium to high signal to noise ratio (SNR).

Citations (79)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube