Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning Less-Overlapping Representations (1711.09300v1)

Published 25 Nov 2017 in cs.LG and stat.ML

Abstract: In representation learning (RL), how to make the learned representations easy to interpret and less overfitted to training data are two important but challenging issues. To address these problems, we study a new type of regulariza- tion approach that encourages the supports of weight vectors in RL models to have small overlap, by simultaneously promoting near-orthogonality among vectors and sparsity of each vector. We apply the proposed regularizer to two models: neural networks (NNs) and sparse coding (SC), and develop an efficient ADMM-based algorithm for regu- larized SC. Experiments on various datasets demonstrate that weight vectors learned under our regularizer are more interpretable and have better generalization performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.