Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Factorizations of $k$-Nonnegative Matrices (1710.10867v1)

Published 30 Oct 2017 in math.CO and math.RA

Abstract: A matrix is $k$-nonnegative if all its minors of size $k$ or less are nonnegative. We give a parametrized set of generators and relations for the semigroup of $k$-nonnegative $n\times n$ invertible matrices in two special cases: when $k = n-1$ and when $k = n-2$, restricted to unitriangular matrices. For these two cases, we prove that the set of $k$-nonnegative matrices can be partitioned into cells based on their factorizations into generators, generalizing the notion of Bruhat cells from totally nonnegative matrices. Like Bruhat cells, these cells are homeomorphic to open balls and have a topological structure that neatly relates closure of cells to subwords of factorizations. In the case of $(n-2)$-nonnegative unitriangular matrices, we show the cells form a Bruhat-like CW-complex.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.