Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantifying the Estimation Error of Principal Components (1710.10124v1)

Published 27 Oct 2017 in math.ST and stat.TH

Abstract: Principal component analysis is an important pattern recognition and dimensionality reduction tool in many applications. Principal components are computed as eigenvectors of a maximum likelihood covariance $\widehat{\Sigma}$ that approximates a population covariance $\Sigma$, and these eigenvectors are often used to extract structural information about the variables (or attributes) of the studied population. Since PCA is based on the eigendecomposition of the proxy covariance $\widehat{\Sigma}$ rather than the ground-truth $\Sigma$, it is important to understand the approximation error in each individual eigenvector as a function of the number of available samples. The recent results of Kolchinskii and Lounici yield such bounds. In the present paper we sharpen these bounds and show that eigenvectors can often be reconstructed to a required accuracy from a sample of strictly smaller size order.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.