Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Rates of Bootstrap Approximation for Eigenvalues in High-Dimensional PCA (2104.07328v2)

Published 15 Apr 2021 in math.ST, stat.ME, and stat.TH

Abstract: In the context of principal components analysis (PCA), the bootstrap is commonly applied to solve a variety of inference problems, such as constructing confidence intervals for the eigenvalues of the population covariance matrix $\Sigma$. However, when the data are high-dimensional, there are relatively few theoretical guarantees that quantify the performance of the bootstrap. Our aim in this paper is to analyze how well the bootstrap can approximate the joint distribution of the leading eigenvalues of the sample covariance matrix $\hat\Sigma$, and we establish non-asymptotic rates of approximation with respect to the multivariate Kolmogorov metric. Under certain assumptions, we show that the bootstrap can achieve the dimension-free rate of ${\tt{r}}(\Sigma)/\sqrt n$ up to logarithmic factors, where ${\tt{r}}(\Sigma)$ is the effective rank of $\Sigma$, and $n$ is the sample size. From a methodological standpoint, our work also illustrates that applying a transformation to the eigenvalues of $\hat\Sigma$ before bootstrapping is an important consideration in high-dimensional settings.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.