2000 character limit reached
Sparse Diffusion-Convolutional Neural Networks (1710.09813v1)
Published 26 Oct 2017 in cs.LG
Abstract: The predictive power and overall computational efficiency of Diffusion-convolutional neural networks make them an attractive choice for node classification tasks. However, a naive dense-tensor-based implementation of DCNNs leads to $\mathcal{O}(N2)$ memory complexity which is prohibitive for large graphs. In this paper, we introduce a simple method for thresholding input graphs that provably reduces memory requirements of DCNNs to O(N) (i.e. linear in the number of nodes in the input) without significantly affecting predictive performance.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.