Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Higher-order Convolution for Small Kernels in Deep Learning (2404.16380v1)

Published 25 Apr 2024 in cs.CV

Abstract: Deep convolutional neural networks (DCNNs) are a class of artificial neural networks, primarily for computer vision tasks such as segmentation and classification. Many nonlinear operations, such as activation functions and pooling strategies, are used in DCNNs to enhance their ability to process different signals with different tasks. Conceptional convolution, a linear filter, is the essential component of DCNNs while nonlinear convolution is generally implemented as higher-order Volterra filters, However, for Volterra filtering, significant memory and computational costs pose a primary limitation for its widespread application in DCNN applications. In this study, we propose a novel method to perform higher-order Volterra filtering with lower memory and computation cost in forward and backward pass in DCNN training. The proposed method demonstrates computational advantages compared with conventional Volterra filter implementation. Furthermore, based on the proposed method, a new attention module called Higher-order Local Attention Block (HLA) is proposed and tested on CIFAR-100 dataset, which shows competitive improvement for classification task. Source code is available at: https://github.com/WinterWen666/Efficient-High-Order-Volterra-Convolution.git

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zuocheng Wen (1 paper)
  2. Lingzhong Guo (1 paper)

Summary

We haven't generated a summary for this paper yet.