Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Modular operads and Batalin-Vilkovisky geometry (1710.08442v2)

Published 23 Oct 2017 in math.QA, math.AG, and math.SG

Abstract: This is a copy of the article published in IMRN (2007). I describe the noncommutative Batalin-Vilkovisky geometry associated naturally with arbitrary modular operad. The classical limit of this geometry is the noncommutative symplectic geometry of the corresponding tree-level cyclic operad. I show, in particular, that the algebras over the Feynman transform of a twisted modular operad P are in one-to-one correspondence with solutions to quantum master equation of Batalin-Vilkovisky geometry on the affine P-manifolds. As an application I give a construction of characteristic classes with values in the homology of the quotient of Deligne-Mumford moduli spaces. These classes are associated naturally with solutions to the quantum master equation on affine S[t]-manifolds, where S[t] is the twisted modular Det-operad constructed from symmetric groups, which generalizes the cyclic operad of associative algebras.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.