Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Batalin-Vilkovisky algebra structure on Poisson manifolds with diagonalizable modular symmetry (2104.14099v4)

Published 29 Apr 2021 in math.DG, math-ph, and math.MP

Abstract: We study the ``twisted" Poincar\'e duality of smooth Poisson manifolds, and show that, if the modular vector field is diagonalizable, then there is a mixed complex associated to the Poisson complex, which, combining with the twisted Poincar\'e duality, gives a Batalin-Vilkovisky algebra structure on the Poisson cohomology. This generalizes the previous results obtained by Xu for unimodular Poisson manifolds. We also show that the Batalin-Vilkovisky algebra structure is preserved under Kontsevich's deformation quantization, and in the case of polynomial algebras it is also preserved by Koszul duality.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.