Papers
Topics
Authors
Recent
Search
2000 character limit reached

Zeroth-Order Online Alternating Direction Method of Multipliers: Convergence Analysis and Applications

Published 21 Oct 2017 in stat.ML and cs.LG | (1710.07804v2)

Abstract: In this paper, we design and analyze a new zeroth-order online algorithm, namely, the zeroth-order online alternating direction method of multipliers (ZOO-ADMM), which enjoys dual advantages of being gradient-free operation and employing the ADMM to accommodate complex structured regularizers. Compared to the first-order gradient-based online algorithm, we show that ZOO-ADMM requires $\sqrt{m}$ times more iterations, leading to a convergence rate of $O(\sqrt{m}/\sqrt{T})$, where $m$ is the number of optimization variables, and $T$ is the number of iterations. To accelerate ZOO-ADMM, we propose two minibatch strategies: gradient sample averaging and observation averaging, resulting in an improved convergence rate of $O(\sqrt{1+q{-1}m}/\sqrt{T})$, where $q$ is the minibatch size. In addition to convergence analysis, we also demonstrate ZOO-ADMM to applications in signal processing, statistics, and machine learning.

Citations (78)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.