Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Stochastic Alternating Direction Method of Multipliers (1308.3558v1)

Published 16 Aug 2013 in cs.LG and cs.NA

Abstract: In this paper, we propose a new stochastic alternating direction method of multipliers (ADMM) algorithm, which incrementally approximates the full gradient in the linearized ADMM formulation. Besides having a low per-iteration complexity as existing stochastic ADMM algorithms, the proposed algorithm improves the convergence rate on convex problems from $O(\frac 1 {\sqrt{T}})$ to $O(\frac 1 T)$, where $T$ is the number of iterations. This matches the convergence rate of the batch ADMM algorithm, but without the need to visit all the samples in each iteration. Experiments on the graph-guided fused lasso demonstrate that the new algorithm is significantly faster than state-of-the-art stochastic and batch ADMM algorithms.

Citations (112)

Summary

We haven't generated a summary for this paper yet.