Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Lamplighters admit weakly aperiodic SFTs (1710.03707v2)

Published 10 Oct 2017 in math.GR and math.DS

Abstract: Let $A$ be a finite set and $G$ a group. A closed subset $X$ of $AG$ is called a subshift if the action of $G$ on $AG$ preserves $X$. If $K$ is a closed subset of $AG$ such that membership in $K$ is determined by looking at a fixed finite set of coordinates, and $X$ is the intersection of all translates of $K$ under the action of $G$, then $X$ is called a subshift of finite type (SFT). If an SFT is nonempty and contains no finite $G$-orbits, it is said to be weakly aperiodic. A virtually cyclic group has no weakly aperiodic SFT, and Carroll and Penland have conjectured that a group with no weakly aperiodic SFT must be virtually cyclic. Answering a question of Jeandel, we show that lamplighters always admit weakly aperiodic SFTs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.