The large scale geometry of strongly aperiodic subshifts of finite type (1412.4572v2)
Abstract: A subshift on a group G is a closed, G-invariant subset of AG, for some finite set A. It is said to be a subshift of finite type (SFT) if it is defined by a finite collection of 'forbidden patterns', to be strongly aperiodic if all point stabilizers are trivial, and weakly aperiodic if all point stabilizers are infinite index in G. We show that groups with at least 2 ends have a strongly aperiodic SFT, and that having such an SFT is a QI invariant for finitely presented torsion free groups. We show that a finitely presented torsion free group with no weakly aperiodic SFT must be QI-rigid. The domino problem on G asks whether the SFT specified by a given set of forbidden patterns is empty. We show that decidability of the domino problem is a QI invariant.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.