Papers
Topics
Authors
Recent
Search
2000 character limit reached

The large scale geometry of strongly aperiodic subshifts of finite type

Published 15 Dec 2014 in math.GR | (1412.4572v2)

Abstract: A subshift on a group G is a closed, G-invariant subset of AG, for some finite set A. It is said to be a subshift of finite type (SFT) if it is defined by a finite collection of 'forbidden patterns', to be strongly aperiodic if all point stabilizers are trivial, and weakly aperiodic if all point stabilizers are infinite index in G. We show that groups with at least 2 ends have a strongly aperiodic SFT, and that having such an SFT is a QI invariant for finitely presented torsion free groups. We show that a finitely presented torsion free group with no weakly aperiodic SFT must be QI-rigid. The domino problem on G asks whether the SFT specified by a given set of forbidden patterns is empty. We show that decidability of the domino problem is a QI invariant.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.