Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Particle rolling MCMC with double-block sampling (1709.09280v5)

Published 26 Sep 2017 in stat.CO and stat.ME

Abstract: An efficient simulation-based methodology is proposed for the rolling window estimation of state space models, called particle rolling Markov chain Monte Carlo (MCMC) with double block sampling. In our method, which is based on Sequential Monte Carlo (SMC), particles are sequentially updated to approximate the posterior distribution for each window by learning new information and discarding old information from observations. Th particles are refreshed with an MCMC algorithm when the importance weights degenerate. To avoid degeneracy, which is crucial for reducing the computation time, we introduce a block sampling scheme and generate multiple candidates by the algorithm based on the conditional SMC. The theoretical discussion shows that the proposed methodology with a nested structure is expressed as SMC sampling for the augmented space to provide the justification. The computational performance is evaluated in illustrative examples, showing that the posterior distributions of the model parameters are accurately estimated. The proofs and additional discussions (algorithms and experimental results) are provided in the Supplementary Material.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube