Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bernstein -- von Mises theorems for statistical inverse problems II: Compound Poisson processes

Published 22 Sep 2017 in math.ST and stat.TH | (1709.07752v3)

Abstract: We study nonparametric Bayesian statistical inference for the parameters governing a pure jump process of the form $$Y_t = \sum_{k=1}{N(t)} Z_k,~~~ t \ge 0,$$ where $N(t)$ is a standard Poisson process of intensity $\lambda$, and $Z_k$ are drawn i.i.d.~from jump measure $\mu$. A high-dimensional wavelet series prior for the L\'evy measure $\nu = \lambda \mu$ is devised and the posterior distribution arises from observing discrete samples $Y_\Delta, Y_{2\Delta}, \dots, Y_{n\Delta}$ at fixed observation distance $\Delta$, giving rise to a nonlinear inverse inference problem. We derive contraction rates in uniform norm for the posterior distribution around the true L\'evy density that are optimal up to logarithmic factors over H\"older classes, as sample size $n$ increases. We prove a functional Bernstein-von Mises theorem for the distribution functions of both $\mu$ and $\nu$, as well as for the intensity $\lambda$, establishing the fact that the posterior distribution is approximated by an infinite-dimensional Gaussian measure whose covariance structure is shown to attain the information lower bound for this inverse problem. As a consequence posterior based inferences, such as nonparametric credible sets, are asymptotically valid and optimal from a frequentist point of view.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.