Papers
Topics
Authors
Recent
Search
2000 character limit reached

Local Private Hypothesis Testing: Chi-Square Tests

Published 21 Sep 2017 in math.ST, cs.CR, and stat.TH | (1709.07155v2)

Abstract: The local model for differential privacy is emerging as the reference model for practical applications collecting and sharing sensitive information while satisfying strong privacy guarantees. In the local model, there is no trusted entity which is allowed to have each individual's raw data as is assumed in the traditional curator model for differential privacy. So, individuals' data are usually perturbed before sharing them. We explore the design of private hypothesis tests in the local model, where each data entry is perturbed to ensure the privacy of each participant. Specifically, we analyze locally private chi-square tests for goodness of fit and independence testing, which have been studied in the traditional, curator model for differential privacy.

Citations (55)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.