Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Profile-Based Privacy for Locally Private Computations (1903.09084v2)

Published 21 Jan 2019 in cs.CR, cs.LG, and stat.ML

Abstract: Differential privacy has emerged as a gold standard in privacy-preserving data analysis. A popular variant is local differential privacy, where the data holder is the trusted curator. A major barrier, however, towards a wider adoption of this model is that it offers a poor privacy-utility tradeoff. In this work, we address this problem by introducing a new variant of local privacy called profile-based privacy. The central idea is that the problem setting comes with a graph G of data generating distributions, whose edges encode sensitive pairs of distributions that should be made indistinguishable. This provides higher utility because unlike local differential privacy, we no longer need to make every pair of private values in the domain indistinguishable, and instead only protect the identity of the underlying distribution. We establish privacy properties of the profile-based privacy definition, such as post-processing invariance and graceful composition. Finally, we provide mechanisms that are private in this framework, and show via simulations that they achieve higher utility than the corresponding local differential privacy mechanisms.

Citations (17)

Summary

We haven't generated a summary for this paper yet.