Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interactive Music Generation with Positional Constraints using Anticipation-RNNs (1709.06404v1)

Published 19 Sep 2017 in cs.AI, cs.LG, and stat.ML

Abstract: Recurrent Neural Networks (RNNS) are now widely used on sequence generation tasks due to their ability to learn long-range dependencies and to generate sequences of arbitrary length. However, their left-to-right generation procedure only allows a limited control from a potential user which makes them unsuitable for interactive and creative usages such as interactive music generation. This paper introduces a novel architecture called Anticipation-RNN which possesses the assets of the RNN-based generative models while allowing to enforce user-defined positional constraints. We demonstrate its efficiency on the task of generating melodies satisfying positional constraints in the style of the soprano parts of the J.S. Bach chorale harmonizations. Sampling using the Anticipation-RNN is of the same order of complexity than sampling from the traditional RNN model. This fast and interactive generation of musical sequences opens ways to devise real-time systems that could be used for creative purposes.

Citations (30)

Summary

We haven't generated a summary for this paper yet.